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Supplementary Figure 1: The relationships between β and C with different sizes.
The best fitting formula is β = 0.0035C−0.697e−46.280C+0.108 withR2 = 0.9956
when system size is 105. When the size Pt is set to 5× 104 or 104, the best fitting
formula has similar form but the constant terms are 0.126 and 0.178, respectively.
Thus, we expect that the constant term will vanish when Pt →∞.
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Supplementary Figure 2: Distribution of the rescaled active population (AP) den-
sity. The rescaling is performed by dividing the maximum of Rt for both x and y
values. The collapse of the three lines indicates that the size effect is negligible and
A in Eq. 1 is a constant. Here, C = 1 and different colors correspond to different
system sizes.
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Supplementary Figure 3: β as a function of r0. The obtained β is almost the same
when r0 is large enough, and when the system size is large enough, the fluctuation
is smaller. Here, C = 1 and different colors correspond to different system sizes.
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Supplementary Figure 4: Properties of the road network composed by Voronoi
polygons. a The relationship between the average length of road segment per capita
area and the corresponding AP density ρ, i.e., l0 ∼ ρ−1/2. b The relationship
between total road length l per capita area and AP density, i.e., l ∼ ρ1/2.
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Supplementary Figure 5: A sample of road networks generated by the minimum
spanning tree model.
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Supplementary Figure 6: Properties of the road network generated by MST. a The
relationship between the average length of road segment per capita area and the
corresponding AP density ρ, i.e., l0 ∼ ρ−1/2. b The relationship between the total
road length l per capita area and AP density, i.e., l ∼ ρ1/2.
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Supplementary Figure 7: Illustration of the mean field analysis in two-dimensional
space.
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Supplementary Figure 8: The working (red) and residential population (blue) den-
sity distributions in Greater London.
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Supplementary Figure 9: The generated AP data points (blue-gray) in Beijing at
jiedao resolution. We only have the information on total AP for each polygon (i.e.,
jiedao). To overcome the low resolution problem of the data, we generate random
data points (blue-gray) within the region. The number of points is proportional to
the total AP in each polygon. Each blue-gray node stands for a population of 1000,
while a red node simply indicates the region, not the population size.
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Supplementary Figure 10: The relationships between nighttime light and regional
GDP at a U.S. metropolitan statistical area (MSA) level and b Beijing district level.
Due to limitations in measurement methods in many countries and limited acces-
sibility to the data, we only test Beijing as a case study. We obtain the regional
GDP data from http://www.bea.gov/ (MSAs data) and the Beijing Munici-
pal Bureau of Statistics (at a district level). And it’s worth noting that compared to
the data used in Ref. [1–3], the nighttime light data in this paper is of higher reso-
lution for both spatial and luminosity (the spatial resolution has been improved to
500m from previous 1km (http://ngdc.noaa.gov/eog/viirs/), and the
upper limit of luminosity value is much higher than previous data which improved
from 64 to 256, which now has far less over-saturation problem.
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Supplementary Figure 11: a The house price decay in Beijing. The data are ob-
tained from the website www.anjuke.com in 2013. The gray scatters are the raw
data, the blue points are the average price, and the lines are obtained by OLS for
different fitting regions (red for a radius of 10km, black for 15km). b The spatial
distribution of house prices in Beijing.
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Supplementary Figure 12: Regressions by support vector machine, of which the
exponents are consistent. a Population versus area. b Road length versus area. c
Socioeconomic output versus area.
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Supplementary Figure 13: Regressions by OLS, of which the exponents are not
consistent. a Area versus population. b Population versus area.
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Supplementary Figure 14: Colour map of the scatter plot for correlation between
nighttime light and AP 1.5 power, with different spatial resolution a 500m, b 1km,
c 1.5km, d 2km, e 2.5km, f 3km. Brighter areas indicate that more data fall in that
small region.
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Supplementary Figure 15: The situation with 7 seed nodes. (a-e) represent the evo-
lution of one realization at different time steps, (f) the AP density distribution. All
the seed nodes (indicated as a cyan star, the (0,0) position is indicated as the yellow
dot) are randomly generated within the square range of 12r0 with center at (0,0)
(i.e., the yellow dot). Since in our model, for a new node, it can only survive if it’s
within a range of r0 to any existing nodes, so we use r0 as the basis of evaluating
how far the seed nodes are away from each other. And in all our simulations as
well as in the main text, r0 = 100. General settings for Supplementary Figs. 15-
19: (i) The node density distribution in sub-fig f is the average of 10 realizations.
The illustrative sub-figures a-e represents the case of one realization. (ii) The pa-
rameters for all the simulations are the same with settings in Fig.2b with C=0.002.
(iii) To increase visibility we avoid plotting the road network, which would require
a higher resolution to make all the roads clearly visible (in the current figure size,
the roads are covered by the nodes in the figures). (iv) When the number of nodes
exceeds 10,000, we use a meshgrid normalized density plot instead of a scatter plot
to more clearly show the node density distribution. In the meshgrid plots, we raster
the space into 50*50 lattices, and within each lattice we count the number of nodes
and normalize the lattice with the largest value. We apply settings (i)-(iv) to the
remaining simulations, and avoid redundant descriptions for the remaining figures.
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Supplementary Figure 16: The situation with fixed seed nodes formation. (a-e)
represent the evolution of one realization at different time steps, (f) the AP density
distribution. Each seed node is 〈d〉 away from the closest seed node. We show the
simulation for the case with 〈d〉=4r0 (a, b) and 〈d〉=9r0 (c, d), and in e we present
all the results with 〈d〉=2r0 (red dots), 3r0 (orange dots), 4r0 (yellow dots) and 9r0
(grey dots).

Supplementary Table
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Supplementary Figure 17: The situation with 7 seed nodes far away from each
other. (a-e) represent the evolution of one realization at different time steps, (f) the
AP density distribution. The distance between any two closest seed nodes is 30r0.
The size of each group varies from 11k to 16k.

Supplementary Table 1: More detailed information on cities studied in the main
text

City Country Center (Lat,Lon) Radius
Amsterdam Netherlands Nieuwmarkt (52.373,4.900) 5km
Beijing China Tian’anmen Square (39.903,115.392) 10km
Berlin Germany Alexanderplatz (52.521,13.412) 10km
Budapest Hungary Elisabeth Bridge (47.493,19.051) 10km
Lille France Palace of Fine Arts (50.631,3.065) 5km
London UK Charing Cross (51.507,-0.128) 10km
Los Angeles USA City Hall (34.052,-118.244) 15km
Milan Italy Duomo (45.464,9.190) 5km
Prague Czech Miru (50.075,14.436) 10km
Tokyo Japan Train Terminal (35.685,139.755) 15km
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Supplementary Figure 18: The situation with adding a new seed node after the
P(t) exceeds 3000. (a-e) represent the evolution of one realization at different time
steps, (f) the AP density distribution. And the new seed node at the southeast of
and 80r0 away from the initial seed node.
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Supplementary Figure 19: The situation with adding a new seed node after the P(t)
exceeds 500. (a-e) represent the evolution of one realization at different time steps,
(f) the AP density distribution. And the new seed node at the southeast of and 18r0
away from the initial seed node.
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Supplementary Notes

Supplementary Note 1: Simulations of AP distribution

In the main text our model is continuous because ρ(r, θ, t) is a continuous field.
However in the simulations we must rasterize the L×L world into L2 discrete lat-
tices (i.e., the side length is 1) in order to calculate the value of ρ and to account for
the effect of C. Thus we must use techniques to fulfill the continuity requirement.

Simulation experiments in the main text are implemented as follows. In an
L × L 2-D Euclidean space the city grows by sequentially adding nodes (active
communities) based on the “spatial attraction” (SA) mechanism. Specifically,
when the seed node is initially located at the center of the free space, at each
time step one node is generated at a random position according to probability
Π(r, θ, t) ∝ ρ(r, θ, t) + C(r, θ, t), where ρ(r, θ, t), at location (r, θ) and time t,
is the density of the AP within the unit area (i.e., a lattice). C(r, θ, t) is a free
parameter characterising the attraction of the natural endowment, which can also
simulate the human preference for “empty” space. For simplicity we assume that
C does not change over time and not vary across different locations. The density
ρ(r, θ, t) of a lattice quantifies the number of its nodes (i.e., active communities).
A new node survives only if it is sufficiently close to other existing nodes (the Eu-
clidean distance between the new node and any other existing node must be smaller
than a given threshold r0); otherwise, it will be removed. Previously existing city
nodes survive in perpetuity.

Ideally we need to set L large enough to ensure that r0 is sufficiently large to
meet the continuity assumption. In most simulations we set L = 108, r0 = 100.
However, since most nodes generated in this way do not survive, the simulation
time will be very long. To accelerate the process, we generate nodes within the pos-
sible survival regions (approximately a square with edge length 2Rt whose center
locats at the position of seed node).

The numerical calculation of ρ(r, t)

We numerically calculate the AP density decay ρ(r, t) (abbreviated ρ(r)) by sum-
ming all the nodes within the ring with a radius from r−∆r to r+∆r and dividing
by the area of the ring, where ∆r is theoretically assumed to approach 0. To in-
crease its practicality we set ∆r = r0 in the simulations because when ∆r is too
small it causes strong fluctuations and violates the continuity assumption of our
model.

Note that in the simulations we separate [0, Rt] into several discrete and dis-
connected intervals of width rw and calculate only ρ(n2 rw), n = 1, 2, ..., bRt/rwc
to estimate ρ(r). We find that when rw is less than r0 the results become highly
inaccurate because of violation of the continuity assumption.
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The explicit form of ρ(r, t)

By fitting extensive simulation results, we find that the density decay formula is

ρ(r, t) = Ar−β(R1+β
t − r1+β), (1)

where A is a constant and Rt is the radius of the city approximated using the
average greatest distance from the city center to its bounding box in the simulation.

We rescale Eq. (1) by dividing Rt, which leads to

ρ′(r, t) = ρ(r, t)/Rt = A(r/Rt)
−β(1− (r/Rt)

1+β) = Ak−β(1− k1+β), (2)

where k denotes r/Rt. This shows that the rescaled formula Eq. (2) is size inde-
pendent. Our simulation results are in good agreement with this rescaled form (see
Supplementary Fig. 2). Figure 2b in the main text shows that the size of system
(Pt) influences the absolute density magnitude but not the shape of the curves.

The explicit form of β(C)

Figure 2a in the main text shows that β can be estimated by a power function
with an exponential cut-off of C. By using nonlinear fitting, we obtain an explicit
form β = 0.0035C−0.697e−46.280C + 0.108, and the degree of fit is R2 = 0.996
when the system size is 105 (see Supplementary Fig. 1). The constant term 0.108
(0.126, 0.178 for system size of 5 × 104, 104, respectively) would approach 0
asymptotically when the size of the system approaches infinity, which is indicated
in Fig. 2a in the main text and in Supplementary Fig. 1.

The effect of interaction range r0

Based on extensive simulations, we find that when r0 is sufficiently large the esti-
mated β is nearly constant (see Supplementary Fig. 3). As system size increases,
the effect of r0 becomes weaker (see Supplementary Fig. 3). In our simulations we
set r0 = 100, which is sufficiently large.

Supplementary Note 2: Simulation of road networks

Voronoi tessellation

Much effort has been dedicated to generating realistic road networks [4–6]. Some
prototypical features of real road networks have been observed, such as E = 1.5P
(where E is the number of roads and P the number of crossroads) and l0 ∼ ρ−1/2

(where l0 is the average length of road segments within a unit square and ρ is the
corresponding AP density at that location) [4].

For simplicity, in our model we employ the standard Voronoi tessellation based
on the AP distribution generated by our model [7,8] (see Fig. 1bc in the main text)
to simulate the road network and capture its significant statistical features.
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Our simulations show that l0 ∼ ρ−1/2 and l ∼ ρ1/2 are reproduced in the
Voronoi tessellation (see Supplementary Fig. 4). In some simple situations there
is solid evidence for both relationships. For example, in a square lattice the total
length of polygons generated within a capita area are also perfect lattices. Here
l0 ∼ (S/N)1/2 ∼ ρ−1/2 and l ∼ 2ρl0 ∼ ρ1/2, where S is the total area and N is
the number of nodes.

In addition, we can also prove that the number of intersections in the road
network of our model is proportional to the number of nodes (i.e., active com-
munities). If we define P to be the number of intersections, E the number of
roads, and Pt the number of active community (i.e., the number of faces if we
treat the voronoi graph as a polyhedron), according to the Euler formula we obtain
(1 + P ) − E + Pt = 2, where 1 is the virtual node (i.e., an intersection) at an in-
finitesimal distance. When deg(P ) ≥ 3 and

∑
deg(P ) = 2E, thenE ≥ 3

2(P+1),
the lower boundary of which is maintained in the usual random scenario consis-
tent with empirical findings. We thus obtain 3

2(P + 1) ≤ E ≤ 3Pt − 6 and
P ≤ 2Pt − 5. Moreover, Voronoi tessellation can also guarantee fairness for two
nodes near a road, i.e., the distances required for each of them to access the road
are the same [7].

Minimum spanning tree

To verify that the details of the road network generating procedure do not affect
its statistical features, we test the basic equations l0 ∼ ρ−1/2 and l ∼ ρ1/2 for
the simulated road networks generated by a minimum spanning tree (MST) (see
Supplementary Fig. 5). In an MST model, when a node is added to the city a new
link is added to connect the new node with its nearest neighbour (if there are several
nearest neighbours at the same distance, then one of them is randomly selected for
connection). Our simulation results indicate that the equations are also validated
by MST (see Supplementary Fig. 6).

Note that l0 ∼ ρ−1/2 holds for MSTs because when the considered regions are
small ρ nodes approximately evenly disperse in them. Then the average distance
between two nearest nodes is l0 = 1/

√
ρ, and the total length of the roads is

l = ρl0 = ρ1/2.

Supplementary Note 3: The Mean-Field analytical results of the model
when C →∞

According to the SA mechanism introduced in the main text we can simulate the
growth of a city, but instead of merely reporting the numeric results we asymptot-
ically derive analytical results for the scaling exponents (namely let t, L → ∞)
for a special case when C → ∞ by an Mean-Field (MF) theory based on growth
rather than static assumptions.

The shape of the city is irregular and anisotropic when the simulation time step
t is smal; but it will shift to a symmetric system with a rough perimeter when t is
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large. Under the MF approximation, the radius of the whole system, denoted Rt,
grows linearly with time t

Rt ∼ t, (3)

where Rt is the longest distance between the city center and the system bounding
box.

When C →∞, each place in the 2-D space has an equivalent probability (i.e.,
we can assume that Π(r, θ) = 1/L2) of accepting a newly generated node at each
time step. Thus the probability that a new node will locate at the boundary of
the system (see Supplementary Fig. 7) is proportional to its perimeter (2πRt) and
independent of time. The average time span between two nodes being added at
the perimeter of the system is then proportional to 1/Rt. To increase the radius
of the system by one unit, we need a large number of nodes (the number of nodes
increases with ∼ Rt) to fill out the perimeter. Thus the average time required for
the radius of the system to increase by one unit is nearly constant (∼ Rt · (1/Rt)).
This means that the radius grows at a constant speed, which yields Eq. (3).

According to Eq. (3) the total area of the system increases in time squared

At ∼ R2
t ∼ t2. (4)

To derive the total number of nodes Pt in the system, we calculate the node density
ρ(r, θ, t) at any spatial location with polar coordinate (r, θ) and time t

ρ(r, θ, t) =

∫ t

τr

1

L2
ds ∼ (t− τr) ∼ (Rt − r), (5)

where ds is the infinitesimal time and τr is the time when the system radius is r.
Because the probability at which the infinitesimal area dσ accepts a new node is
a constant (1/L2), the average density of the AP in this infinitesimal area is the
accumulation of nodes born between time steps τr and t. We set β = 0 in Eq. (1)
and derive Eq. (5), indicating that Eq. (1) is a general form. The total population
Pt can be computed by integrating Eq. (5),

Pt =

∫ Rt

0

∫ 2π

0
ρ(r, θ, t)rdrdθ

= 2π

∫ Rt

0
r1−βR1+β

t − r2dr

= 2π(
R3
t

2− β
− R3

t

3
) ∼ R3

t .

(6)

According to Eqs. (6) and (4) we obtain the scaling relationship between area and
population At ∼ P 2/3

t .
We next analyse the total road length and assume that the road length per capita

is l(r, θ, t) at time t. According to l ∼ ρ1/2 the total road length of the entire
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network is

Lt =

∫
ltdσ ∼

∫ Rt

0

∫ 2π

0
l(r, θ, t)rdrdθ

=

∫ Rt

0

∫ 2π

0
ρ(r, θ, t)1/2rdrdθ ∼ R5/2

t .

(7)

Combining Eqs. (6) and (7) we obtain the scaling relationship Lt ∼ P 5/6
t .

We also assume that the total local interactions per capita are equal to g(r, θ, t),
which is proportional to the local AP density times the local road volume, assuming
that all local interactions occur along the road. Thus g(r, θ, t) = ρ(r, θ, t)l(r, θ, t) ∼
ρ
3/2
t . The total number of socioeconomic interactions in the system is then

Gt =

∫
gtdσ ∼

∫ Rt

0

∫ 2π

0
g(r, θ, t)rdrdθ

=

∫ Rt

0

∫ 2π

0
ρ(r, θ, t)3/2rdrdθ ∼ R7/2

t .

(8)

HenceGt and Pt have the scaling relationshipGt ∼ P 7/6
t . Because the total output

in the system is proportional to the total number of interactions, the socioeconomic
interactions in the system scale with the population at power 7/6.

Empirical validation

To test whether the relations

Pt ∼ R3
t , Gt ∼ R

7/2
t , Lt ∼ R5/2

t

hold in a real-world scenario, we use data from US cities. We first obtain shape-
files of all the cities on the US Census website (https://www.census.gov/
geo/maps-data/) in which the boundary is closer to the metropolitan statisti-
cal area rather than to the administrative boundary. We choose the top 150 cities
and calculate the total area A of each. We then download all the road networks
in US from the USGS website (https://www.usgs.gov/) and calculate the
total road length L within urban areas. There are 19,371,674 roads in US, approx-
imately one third of which (6,732,730) are in urban areas. Finally we obtain the
night light data from NOAA/NGDC (the same source as in the main text), and
calculate the total luminosity G of each city.

Because the shape of real-world cities is usually irregular (e.g., they are not
round or square) it is difficult to calculate their radius. Instead we calculate their
effective radius

√
A/π and test all the scaling exponents on area A. We then

multipy by 2 to get the scaling exponents on Rt. Supplementary Fig. S12 shows
that the exponent of population P on area A is 1.434, which yields 2.869 on radius
Rt. For G it is 3.227, and for L it is 2.400.
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Here we encounter a technical issue related to the ordinary least squares (OLS)
assumption. Because these data do not statisfy the OLS assumption, the regression
exponents are not consistent when we do a coordination transform. For example,
when we do an OLS regression on the population it gives us A ∼ P 0.68 (see
Supplementary Fig. 13a); if the method were consistent it would give us P ∼
A1/0.68 = A1.47, but when we do an OLS on an area it gives us P ∼ A1.25 (see
Supplementary Fig. 13b), which is far less than 1.47. The reason partially lies in
the nature of the data and partially in the OLS process, which minimizes the RSS
distance of points to the line and causes inconsistency in the coordinate transform.
Thus to maintain consistency we employ a support vector machine for regression,
and this gives us consistent results (see Supplementary Fig. S12).

Supplementary Note 4: Population distributions of London and Beijing

London

The main text indicates that the AP distribution follows a power law. Supplemen-
tary Fig. 8)) shows that the difference between working and residential population
densities distribution is significant, and none of them are power law. In central
areas that are often non-livable or too expensive the residential population density
is low but the working population density high.

Beijing

The population data for Beijing are at a jiedao resolution, which is a lower res-
olution than the London data. Thus we perform some pre-processes to increase
the resolution. There are fewer than 200 original data points within our research
area. Each red point denotes the region (the polygon in Supplementary Fig. 9) but
not the population size. Thus we generate AP nodes randomly at each jiedao (see
Supplementary Fig. 9). Each generated point (light gray) represents 1000 persons,
and the number of points is proportional to the total population within this region.
If we had more information on the building situation in each area (e.g., land use,
proportion of built-up area, and building density), we would be able to obtain a
more realistic distribution.

Supplementary Note 5: More details for empirical studies of real cities

The high-quality working population data used in this paper are unfortunately usu-
ally inaccessible. We were only able to acquire this data for London and Beijing.
These data are also usually affected by such technical problems as measurement
techniques. In contrast, road network and nighttime light data are widely available,
especially for large cities, and using these we analyze 10 large representative cities
worldwide (see Table 2 in the main text and Supplementary Table 1).
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Fitting regions for spatial scalings

To study the spatial scaling of real cities, we need to determine the range of distance
to fit the data and estimate the exponent. We determine the lower and upper cut-offs
of the distance such that the intermediate region remains. This allows us to ignore
the influences of noise and non-linear effects [9–11]. We set the lower cut-off of
the distance to the city center at 500 meters. The upper cutoff is calculated by the
reported urban area of the city. In general this is the radius of the fully urbanized
area. In Supplementary Table 1 we provide detailed information on the location
and name of the city center and the range of the city (in Table 2 in the main text,
we only give the exponents). We cross check this information from Wikipedia,
Geohack, and Google Earth.

In addition, the U.S. Census has a good quality, but it only counts the number
of residents in a certain area as residential population and the number of residents
who have a job as working population (the resident may work in other places, but
they don’t record this information). So the working population of a place from
U.S. Census is the population who have jobs and living that area, rather than the
working population who are really working in a certain area. So these two work-
ing population are totally different, the latter one is what we want but can not be
obtained from U.S. Census.

Supplementary Note 6: The correlation between socioeconomic inter-
actions and nighttime light within cities

Previous studies [1–3] indicate that nighttime light data is a good proxy for GDP (a
typical socioeconomic output quantity) at nation or state level, and nighttime light
data has been widely used in GDP analysis [12]. And it’s natural to assume that the
number of socioeconomic output is proportional to the socioeconomic interactions
(see Ref. [13] and references therein, and this assumption is also partially validated
in Ref. [14]), since human activities are the very reason behind all socioeconomic
outputs. So the nighttime light can be a good proxy of socioeconomic interactions
at such a relatively large scale.

Yet there are concerns about whether it is also suitable at a finer scale (e.g., at a
city, sub-city(district) and even community level), since at a high spatial resolution
(especially at the community level), the luminosity is more related to the density of
roads, the installation of lights and the type of the communities (e.g., business area
naturally have more lights than residencial and industrial areas where the interac-
tions are more likely to occur during the day). Although there is a disadvantage
to using nighttime light data as a proxy of interactions at such a high spatial res-
olution (e.g., community level), luminosity data is the best among all available
open-source data for estimating human activity and interaction. Compared to the
data used in Refs. [1–3], the nighttime light data that we have used has higher spa-
tial resolution and luminosity upper limit (the spatial resolution has been improved
to 500m from the previous 1km (https://ngdc.noaa.gov/eog/viirs/), and the upper
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limit of the luminosity value is much higher than in previous data, which has been
improved from 64 to 256, and there is a far smaller over-saturation problem.

In orde to justify the correlation between interactions and nighttime luminos-
ity, we first test it at the city and sub-city (district) level and find that luminosity
is a good indicator of socioeconomic outputs at both city and sub-city scale – the
correlation between the luminosity and the regional GDP of cities is high (see Sup-
plementary Fig. 10). As long as the assumption that the level of socioeconomic
output is proportional to the socioeconomic interactions [13, 14], then the corre-
lation between interactions and nighttime luminosity should hold at the city and
sub-city level.

Although at a community level, we don’t have corresponding high resolution
socioeconomic output data, yet the active population concept proposed in our paper
provides a means of estimating the number of interactions there, which allows
us to directly test the correlation between luminosity and interactions. Although
estimating the number of interactions will also be affected by land use type, a
larger population usually has a higher level of interaction.

We then performed a resolution robustness test on the correlation at a finer
resolution (with 500m, 1km, 1.5km, 2km, 2.5km, 3km, see Supplementary Fig.
14A-F, respectively). We find that when the population density is low, the estima-
tion from the active population deviates from the empirical night light data, which
may be because the luminosity is more related to the density of roads. Thus when
the population density is low, the night light may not be that low due to the impacts
of roads (see Supplementary Fig. 14A). At a larger scale the deviations decrease
(see Supplementary Fig. 14A-F). The point cloud is more concentrated along the
diagonal, which indicates that nighttime light is a good proxy for testing our model
within cities. We find that 1km*1km is a scale that maintains both a finer spatial
resolution and fewer minor deviations.

Supplementary Note 7: Rent price

We can also derive additional variables under framework of our model with reason-
able assumptions. For example, following Bettencourt’s work [13] we can evaluate
the average rent price of a given city using its total GDP output divided by area.
Then the rent price is Prent ∝ Pt/At ∝ R

3/2
t ∝ P

1/2
t . Then the scaling be-

tween the average rent price in a city and the city size exhibits an exponent 1/2,
which has been validated in the literature [13]. If we assume that the local rent
price is proportional to demand and local socioeconomic development level, then
this yields p(r, θ, t) ∝ g(r, θ, t)ρ(r, θ, t) ∝ ρ5/2, where p(r, θ, t) is the local rent
price density in the location (r, θ) and time t, and g(r, θ, t) is the local interaction
density. Then we derive that p(r) ∝ r−5/2β in the downtown area, which is quali-
tatively supported by the empirical results (see Supplementary Fig. 11). However,
the empirical exponent in the real data deviates a bit with our model’s prediction
of Beijing, whose β = 0.09, where the prediction is about −0.225, whereas the
empirical exponent is −0.30 for the downtown area (with radius equals 10km) or
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−0.44 for a larger region (with radius 15km). Due to the nature of rent price,
there’s not dramatic decay even in urban fringe as compared to population density.
We suspect that some key factors that affect prices may be neglected in our sim-
ple assumption. We only get access to high quality house price data in 2013 from
www.anjuke.com and we treat it as a proxy for rent price. Although some re-
search indicates that rent price can be used to predict house price [15], other results
indicate that the relationship is not explicit [16]. Nevertheless, we clearly observe
that house prices decay from the center (see Supplementary Fig. 11).

Supplementary Note 8: Simulations of AP distribution with multiple
seed nodes and a new seed node after certain time steps

The goal of our paper is to propose an analytical model that is both general and
simple. The one seed node assumption is the simplest initial condition that allows
us to illustrate the typical growth process of a monocentric city. Yet there might
be concerns about whether the model is robust with respect to the initial conditions
with multiple seed nodes.

If the seed nodes are initially close to each other in a small area, the result is
the same as that of a single seed node after several time steps with results identical
to those shown in Fig. 2b.

Thus we examine a case in which the distances between seed nodes are nei-
ther close nor too far away. We find that the clusters first grow separately and,
after several time steps, merge together. We find that early on the spatial distribu-
tion of multiple seed nodes strongly affect the morphology of the city (the spatial
distribution of seed nodes becomes the backbone of the city morphology, see Sup-
plementary Fig. 15bc), but later in the urban evolution the impact of seed nodes
fades (see Supplementary Fig. 15de). We also find that the power exponent β of
the density distribution is affected by the presence of multiple seed nodes, which
is a little less than the results shown in Fig. 2b (especially at early periods, see
Supplementary Fig. 15f), yet the population density continues to be robust (only
the β varies). In later periods the impacts weaken. And we also found that the
power exponent β of density distribution is affected by the presence of multiple
seed nodes which is a little bit lower than the results shown in Fig.2b (especially
at early periods, see Supplementary Fig. 15f), yet the population density form is
quite robust (only the β varies); and when it comes to late periods, the impacts also
become weaker.

To systematically test the impact on density distribution, we carry out exper-
iments with fixed seed-node formations in which only the distance between seed
nodes varies (see Supplementary Fig. 16). We do four simulations (each distin-
guished by a different color) with an increasing distance between each seed node,
and in each simulation we also record the node density distribution at different
system sizes (i.e., when P(t)=5*104 and 105). Supplemetary Fig. 16e shows simu-
lations in which there is a flatter distribution (indicated by a smaller β value) when
the system size is 50K (i.e., 104.7) due to the dispersed distribution and separate
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development of several seed nodes. When more nodes are added to the system,
the slope becomes steeper and closer to that shown in Fig. 2b (see the system
size 100K). This finding holds for all four cases with different distance 〈d〉 values
between the seed nodes.

When we fix the final size of the system (e.g., 105 nodes), the increased dis-
tance 〈d〉 between seed nodes produces a flatter distribution (see Supplementary
Fig. 16e). When 〈d〉=9r0 it is much flatter and no longer smooth. We also test
cases with a longer distance between seed nodes. When reach a certain distance
(e.g., 20-30r0 for a system with 105 nodes), the results become simple again, and
all seed nodes eventually resemble separate towns of slightly differing sizes (see
Supplementary Fig. 17). Examining all seven clusters in the system, we find the
node density distributions are almost the same as those shown in Fig. 2b. Yet ran-
domness still plays a role in different clusters and causes slight differences in the
β values.

Another scenario that we may observe during urbanization is the case with a
new seed node added somewhere after a certain number of time steps tc, and we
carry out experiments using different conditions.

When a new seed node is at the fringe of a city about to be urbanized, the
impact of the new seed node is negligible. It does not affect other nodes at the
fringe provided there are no subsequent interventions.

When a seed node is located far from a city center and does not merge with it
within a certain number of time steps, and if there are no subsequent interventions,
the new seed node grows and forms a small town (see Supplementary Fig. 18).
Investigating the impacts of further policy impacts involves more factors and is
beyond the scope of this paper and would require a more systematical study in the
future.

And the most interesting scenario is still the case where the new town and the
previous city can finally merge together. The new seed node (new town) expands
the area of the city during the early periods of growth (blue points in Supplemen-
tary Fig. 19f, which do not decrease as quickly as those shown in Fig. 2b). During
later periods in the urbanization process the impact of new towns weakens. The
distribution tightens (i.e., β is smaller and more similar to β in Fig. 2b), which
indicates that the form of density distribution produced by our model is more sta-
tionary.
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